## Qubino

The INNOVATIVE and SMALLEST
Flush 2 Relay

| ORDERING CODE | Z-WAVE FREQUENCY |
| :---: | :---: |
| ZMNHBD1 | $868,4 \mathrm{MHz}$ |
| ZMNHBD2 | $921,4 \mathrm{MHz}$ |
| ZMNHBD3 | $908,4 \mathrm{MHz}$ |
| ZMNHBD4 | $869,0 \mathrm{MHz}$ |
| ZMNHBD5 | $916,0 \mathrm{MHz}$ |
| ZMNHBD8 | $865,2 \mathrm{MHz}$ |

This Z-Wave module is used for switching on or off two electrical devices (e.g. lights or fans...). The module can be controlled either through $Z$-Wave network or through the wall switches. The module is designed to be mounted inside a "flush mounting box", hidden behind a traditional wall switch. Module measures power consumption of two electrical devices and supports connection of digital temperature sensor. It is designed to act as repeater in order to improve range and stability of Z-wave network.

## Supported switches

Module supports mono-stable switches (push button) and bi-stable switches. The module is factory set to operate with bi-stable switches

## Installation

- To prevent electrical shock and/or equipment damage, disconnect electrical power at the main fuse or circuit breaker before installation or any servicing.
- Make sure, that no voltage is present in the installation.
- Prevent the disconnecting device from being switched on accidentally.
- Connect the module according to electrical diagram - Locate the antenna far from metal elements (as far as possible).
Do not shorten the antenna.
Danger of electrocution!
- Module installation requires a great degree of skill and may be performed only by a qualified and licensed electrician.
- Even when the module is turned off, voltage may be present on its terminals.


## Note!

Do not connect the module to loads exceeding $\mathbf{N} \quad+$ VDC recommended values. Connect the module only in

Notes for the diagram:
accordance to the below diagrams. Improper connections may be dangerous.
Electrical installation must be protected by directly 12 associated over current protection fuse 4A, gG or Time $\quad 11$ lag T, rated breaking capacity 1500A (ESKA 522.723) TS must be used according to wiring diagram to achieve appropriate overload protection of the module.The fuse must be installed in fuse holder type: Adele contact 503Si/ 1 DS.


Notes for the diagram
L Live lead
Q1 $\uparrow$ Output for electrical device no. 1
Q2 $\uparrow$ Output for electrical device no. 2
12 Input for switch to control electrical device no. 2
I1 Input for switch to control electrical device no. 1
TS Terminal for digital temperature sensor (only for Flush 2 Relays module compatible digital temperature sensor, which must be ordered separately).
Wago 221-413 splicing connectors for $L$ and $N$ connection must be used.

+VDC

Output for electrical device no.

Output for electrical device no. 2
Input for switch to control electrical device no. 2 Input for switch to control electrical device no. 1 Terminal for digital temperature sensor (only fo Flush 2 Relays module compatible digital temperature sensor, which must be ordered separately).

S Service button (used to add or remove module from the Z-Wave network in case of 24 V SELV power supply).

WARNING: Service button $S$ must NOT be used when module is connected to $110-230 \mathrm{~V}$ power supply. Durability of the device depends on applied load. Fo resistive load (light bulbs, etc.) and 4A current consumption of each individual electrical device, the durability exceeds 70.000 switches of each individual electrical device.

## Package contents

Flush 2 Relays

## Module Inclusion (Adding to Z-Wave network)

- Connect module to power supply (with
temperature sensor connected - if purchased),
- enable add/remove mode on main controller
- auto-inclusion (works for about 5 seconds after connected to power supply) or
- press push button 11 three times within 3s (3 times change switch state within 3 seconds) or
press service button S (only applicable for 24 V SELV supply voltage) for more than 2 second.
NOTE1: For auto-inclusion procedure, first set main controller into inclusion mode and then connect module to power supply.
NOTE2: When connecting temperature sensor to module hat has already been included, you have to exclude module first. Switch off power supply, connect the senso and re-include the module.


## Module Exclusion/Reset (Removing from

## Z-Wave network

Connect module to power supply
bring module within maximum 1 meter (3feet) of the main controller,

- enable add/remove mode on main controller,
- press push button $\mathbf{I 1}$ five times within $3 s$ ( 5 times change switch state within 3 seconds) in the first 60 seconds after the module is connected to the power supply or
press service button $\mathbf{S}$ (only applicable for 24 V SELV supply voltage) for more than 6 second

By this function all parameters of the module are set to default values and own ID is deleted.
If push button I1 is pressed three times within 3s (or service button $S$ is pressed more than 2 and less than 6 seconds) module is excluded, but configuration parameters are not

## set to default values

## Associations

Associations enables Flush 2 Relays module to transfer commands inside Z-Wave network directly (without main controller) to other Z-Wave modules.

## Associated Groups:

## Root device:

Group 1: Lifeline group (reserved for communication with the main controller), 1 node allowed.
Group 2: basic on/off (triggered at change of the output Q1 state and reflecting its state) up to 16 nodes.
Group 3: switch binary report (triggered at change of the output Q1 state and reflecting its state) up to 16 nodes. Group 4: power meter report (triggered at change of the output Q1 state) up to 16 nodes
Group 5: basic on/off (triggered at change of the output Q2 state and reflecting its state) up to 16 nodes.
Group 6: switch binary report (triggered at change of the output Q2 state and reflecting its state) up to 16 nodes. Group 7: power meter report (triggered at change of the output Q2 state) up to 16 nodes
Group 8: multilievel sensor report (triggered at change of temperature sensor) up to 16 nodes.
End point 1:
Group 1: Lifeline group, 0 nodes allowed.
Group 2: basic on/off (triggered at change of the output Q1 state and reflecting its state) up to 16 nodes.
Group 3: switch binary report (triggered at change of the output Q1 state and reflecting its state) up to 16 nodes. Group 4: power meter report (triggered at change of the output Q1 state and reflecting its state) up to 16 nodes.

## End point 2:

Group 1: Lifeline group, 0 nodes allowed.
Group 2: basic on/off (triggered at change of the output Q2 state and reflecting its state) up to 16 nodes. Group 3: switch binary report (triggered at change of the output Q2 state and reflecting its state) up to 16 nodes. Group 4: power meter report (triggered at change of the output Q2 state and reflecting its state) up to 16 nodes. End point 3 :
Group 1: Lifeline group, 0 nodes allowed.
Group 2: multilevel sensor report (triggered at change of emperature sensor) up to 16 nodes.

## Configuration parameters

Parameter no. 1 - Input 1 switch type DEC) DEC):

0 - mono-stable switch type (push button)

Parameter no. 2 - Input 2 switch type
Available configuration parameters (data type is 1 Byte DEC):

## default value 1

- 0 - mono-stable switch type (push button)
- 1 - bi-stable switch type

Parameter no. 10 - Activate / deactivate functions ALL ON/ALL OFF
Available configuration parameters (data type is 2 Byte DEC):

## - default value 255

- $255-\mathrm{ALL}$ ON active, ALL OFF active.
$0-$ ALL ON is not active ALL OFF is not active
1 - ALL ON is not active ALL OFF active
- 2-ALL ON active ALL OFF is not active

Flush 2 Relays module responds to commands ALL ON / ALL OFF that may be sent by the main controller or by other controller belonging to the system.
Parameter no. 11-Automatic turning off output Q1 after set time
When relay Q1 is ON it goes automatically OFF after time defined by this parameter. Timer is reset to zero each time the module receive ON command regardless from where it comes (push button, associated module, controller,...). Available configuration parameters (data type is 2 Byte DEC):
default value 0

- 0-Auto OFF disabled
- $1-32535=1$ second $(0,01$ s $)-32535$ seconds $(325,35 \mathrm{~s})$ Auto OFF enabled with define time, step is 1 s or 10 ms according to parameter nr. 15 .
Parameter no. 12-Automatic turning on output Q1 after set time
When relay Q1 is OFF it goes automatically ON after time defined by this parameter. Timer is reset to zero each time the module receive OFF command regardless from where it comes (push button, associated module, controller,...). Available configuration parameters (data type is 2 Byte DEC):


## - default value 0

## 0 - Auto ON disabled

- $1-32535=1$ second $(0,01 \mathrm{~s})-32536$ seconds $(325,35 \mathrm{~s})$ Auto ON enabled with define time, step is 1s or 10 ms according to parameter nr. 15 .
Parameter no. 13-Automatic turning off output Q2 after set time
When relay Q2 is ON it goes automatically OFF after time defined by this parameter. Timer is reset to zero each time the module receive ON command regardless from where it comes (push button, associated module, controller,..). Available configuration parameters (data type is 2 Byte DEC):
- default value 0
- 0-Auto OFF disabled
- $1-32535=1$ second $(0,01 \mathrm{~s})-32535$ seconds $(325,35 \mathrm{~s})$ Auto OFF enabled with define time, step is 1 s or 10 ms according to parameter nr. 15 .
Parameter no. 14 - Automatic turning on output Q2 after set time
When relay Q2 is OFF it goes automatically ON after time defined by this parameter. Timer is reset to zero each time the module receive OFF command regardless from where it comes (push button, associated module, controller...) Available configuration parameters (data type is 2 Byte DEC):


## default value 0

## - - Auto ON disabled

- $1-32535=1$ second $(0,01 \mathrm{~s})-32536$ seconds $(325,35 \mathrm{~s})$ Auto ON enabled with define time, step is 1 s or 10 ms according to parameter nr. 15 .
Parameter no. 15-Automatic turning off / on seconds


## or milliseconds selection

Available configuration parameters (data type is 1 Byte DEC):

- default value 0
- 0 - seconds selected
- 1 - milliseconds selected

Note that parameter is valid for both outputs Q1, Q2 and is the same for turning off or on.
Parameter no. 30 - Saving the state of the relays Q1 and Q2 after a power failure
Available configuration parameters (data type is 1 Byte DEC):

## default value 0

- 0 - Flush 2 Relays module saves its state before power failure (it returns to the last position saved before a power failure)
- 1 - Flush 2 Relays module does not save the state after a power failure, it returns to "off" position.
Parameter no. 40 - Power reporting in Watts on power change for Q1
Set value means percentage, set value from $0-100=0 \%$ $100 \%$. Available configuration parameters (data type is 1 Byte DEC):
- default value 10
- 0 - reporting disabled
- $1-100=1 \%-100 \%$ Reporting enabled. Power report is send (push) only when actual power in Watts in real time changes for more than set percentage comparing to previous actual power in Watts, step is 1\%.
NOTE: if power changed is less than 1 W , the report is not send (pushed), independent of percentage set.
Parameter no. 41 - Power reporting in Watts on power change for $\mathrm{Q}^{2}$
Set value means percentage, set value from $0-100=0 \%$ $100 \%$. Available configuration parameters (data type is 1 Byte DEC):

1-100 $=1 \%-100 \%$ Reporting enabled. Power report is send (push) only when actual power in Watts in real time changes for more than set percentage comparing to previous actual power in Watts, step is 1\%.
NOTE: if power changed is less than 1 W , the report is not send (pushed), independent of percentage set
Parameter no. 42 - Power reporting in Watts by time interval for Q1
Set value means time interval ( $0-32535$ ) in seconds, when power report is send. Available configuration parameters (data type is 2 Byte DEC): defau
$300 \mathrm{~s})$

- 0 - reporting disabled
- $1-32535=1$ second -32535 seconds. Reporting enabled, Power report is send with time interval set by entered value.
Parameter no. 43 - Power reporting in Watts by time interval for Q2
Set value means time interval $(0-32535)$ in seconds, when power report is send. Available configuration parameters (data type is 2 Byte DEC):


## 300s)

$0-$ reporting disabled

- $1-32535=1$ second -32535 seconds. Reporting enabled, Power report is send with time interval set by entered value.


## Parameter no. 63 - Output Q1 Switch selectio

Set value means the type of the device that is connected to the Q1 output. The device type can be normally open (NO) or normally close (NC). Available configuration parameters (data type is 1 Byte DEC):

## - default value 0

- $0-$ When system is turned off the output is $\mathrm{OV}(\mathrm{NC})$. - 1 - When system is turned off the output is 230 V (NO) Parameter no. 64 - Output Q2 Switch selection Set value means the type of the device that is connected to the Q2 output. The device type can be normally open (NO) or normally close (NC). Available configuration parameters (data type is 1 Byte $D E C$ ):


## - default value 0

0 - When system is turned off the output is $0 \mathrm{~V}(\mathrm{NC})$. - 1 - When system is turned off the output is 230 V (NO), Parameter no. 110 - Temperature sensor offset settings Set value is added or subtracted to actual measured value by sensor. Available configuration parameters (data type is 2 Byte DEC):

- default value 32536
- 32536 - offset is 0.0 C

From 1 to 100 - value from $0.1^{\circ} \mathrm{C}$ to $10.0^{\circ} \mathrm{C}$ is added to actual measured temperature.
From 1001 to 1100 - value from $-0.1^{\circ} \mathrm{C}$ to $-10.0^{\circ} \mathrm{C}$ is subtracted to actual measured temperature.
Parameter no. 120 - Temperature sensor reporting
If digital temperature sensor is connected, module report measured temperature on temperature change defined by this parameter. Available configuration parameters (data type is 1 Byte DEC):

- Default value $5=0,5^{\circ} \mathrm{C}$

0 - Reporting disabled
1- $127=0,1^{\circ} \mathrm{C}-12,7^{\circ} \mathrm{C}$, step is $0,1^{\circ} \mathrm{C}$
Technical Specifications

| Power supply | 110-230 VAC $\pm 10 \%$ <br> 50/60Hz, (24-30VDC) |
| :---: | :---: |
| Rated load current of AC output (resistive load)* | $2 \mathrm{X4A} / 230 \mathrm{VAC}$ |
| Rated load current of DC output (resistive load) | $2 \mathrm{X} 4 \mathrm{~A} / 30 \mathrm{VDC}$ |
| Output circuit power of AC output (resistive load) | 2 X 920 W (230VAC) |
| Output circuit power of DC output (resistive load) | $2 \times 96 \mathrm{~W}$ (24VDC) |
| Power measurement accuracy | $\begin{aligned} & \mathrm{P}=0-200 \mathrm{~W},+1-2 \mathrm{~W} \\ & \mathrm{P}>200 \mathrm{~W},+1-3 \% \end{aligned}$ |
| Digital temperature sensor range (sensor must be ordered separately) | $-50 \sim+125^{\circ} \mathrm{C}$ |
| Operation temperature | $-10 \sim+40^{\circ} \mathrm{C}$ |
| Distance | up to 30 m indoors (depending on building materials) |
| Dimensions (WxHxD) (package) | $\begin{gathered} 41,8 \times 36,8 \times 16,9 \mathrm{~mm} \\ (79 \times 52 \times 22) \\ \hline \end{gathered}$ |
| Weight (Brutto with package) | 28 g (34g) |
| Electricity consumption | 0,4W |
| For installation in boxes | $\begin{gathered} \varnothing \geq 60 \mathrm{~mm} \text { or } 2 \mathrm{M}, \\ \text { depth } \geq 60 \mathrm{~mm} \end{gathered}$ |
| Switching | Relay (2x) |

*In case of load other than resistive, pay attention to the value of $\cos \varphi$ and if necessary apply load lower than the rated load. Max current for $\cos \varphi=0,4$ is 2 A at $250 \mathrm{VAC}, 3 \mathrm{~A}$ at 24 VDC .

## Supported loads:

(M) Electric motor

- Conventional incandescent and halogen lights ( $\otimes$ LED bulb, compact fluorescent bub (CFL) low voltage halogen bulbs with electronic transformer Il|| Low voltage halogen bulbs with conventional transformer

ZWAVEPLUS_INFO_REPORT_ROLE_TYPE_SLAVE_AL WAYS_ON
GENERIC_TYPE_SWITCH_BINARY SPECIFIC_TYPE_POWER_SWITCH_BINARY z-Wave Supported Command Classes: COMMAND_CLASS_ZWAVEPLUS_INFO_V2 COMMAND_CLASS_VERSION_V2
COMMAND_CLASS_MANUFACTURER_SPECIFIC_V2C OMMAND_CLASS_DEVICE_RESET_LOCALLY V1 COMMAND_CLASS_POWERLEVEL_V COMMAND CLASS BASIC V1
COMMAND_CLASS_SWITCH_ALL_V1 COMMAND_CLASS_SWITCH_BINARY_V1 COMMAND_CLASS_METER_V4
COMMAND_CLASS_SENSOR_MULTILEVEL V7 COMMAND_CLASS_MULTI_CHANNEL_V4 COMMAND CLASS ASSOCIATION V2 COMMAND_CLASS_MULTI_CHANNEL_ASSOCIATION V3
COMMAND_CLASS_ASSOCIATION_GRP_INFO_V2 COMMAND_CLASS_CONFIGURATION_V1 COMMAND_CLASS_MARK
COMMAND CLASS BASIC V1

## Endpoint 1 (11)

## Device Class:

GENERIC_TYPE_SWITCH_BINARY SPECIFIC_TYPE_POWER_SWITCH_BINARY

## Command Classes:

COMMAND CLASS ZWAVEPLUS INFO V2 COMMAND CLASS VERSION V2 COMMAND_CLASS_SWITCH_BINARY_V1 COMMAND_CLASS_BASIC_V1 COMMAND_CLASS_SWITCH_ALL_V1 COMMAND_CLASS_ASSOCIATION V2 COMMAND CLASS MULTI CHANNEL ASSOCIATION v3

COMMAND_CLASS_ASSOCIATION_GRP_INFO_V2 COMMAND_CLASS_METER_V4
COMMAND_CLASS_MARK
COMMAND_CLASS_BASIC_V1

## Endpoint 2 (I2)

## Device Class:

GENERIC_TYPE_SWITCH_BINARY
SPECIFIC_TYPE_POWER_SWITCH_BINARY

## Command Classes:

COMMAND_CLASS_ZWAVEPLUS_INFO_V2
COMMAND CLASS VERSION V2
COMMAND CLASS SWITCH BINARY V1
COMMAND_CLASS_BASIC_V1
COMMAND_CLASS_SWITCH_ALL_V1
COMMAND_CLASS_ASSOCIATION_V2
COMMAND_CLASS_MULTI_CHANNEL_ASSOCIATION v3
COMMAND_CLASS_ASSOCIATION_GRP_INFO_V2

COMMAND_CLASS_METER_V4
COMMAND_CLASS_MARK
COMMAND_CLASS_BASIC_V1

## Endpoint 3:

## Device Class:

GENERIC_TYPE_SENSOR_MULTILEVEL
SPECIFIC_TYPE_ROUTING_SENSOR_MULTILEVEL

## Command Classes:

COMMAND_CLASS_ZWAVEPLUS_INFO_V2
COMMAND_CLASS_VERSION_V2
COMMAND_CLASS_SENSOR_MULTILEVEL_V7
COMMAND_CLASS_ASSOCIATION_V2
COMMAND_CLASS_MULTI_CHANNEL_ASSOCIATION V3
COMMAND_CLASS_ASSOCIATION_GRP_INFO_V2 NOTE: The above list is valid for the product with a temperature sensor connected to TS terminal. In case the sensor is not connected then the following command class is not supported:
COMMAND_CLASS_SENSOR_MULTILEVEL_V7 This product can be included and operated in any Z-Wave network with other Z-Wave certified devices from any other manufacturers. All constantly powered nodes in the same network will act as repeaters regardless of the vendor in

## order to increase reliability of the network.

## Important disclaimer

Z-Wave wireless communication is inherently not always $100 \%$ reliable, and as such, this product should not be used in situations in which life and/or valuables are solely dependent on its function.

## Warning!

Do not dispose of electrical appliances as unsorted municipal waste, use separate collection facilities. Contact your local government for information regarding the collection systems available. If electrical appliances are disposed of in landfills or dumps, hazardous substances can leak into the groundwater and get into the food chain, appliances with new once, the retailer is legally obligated to take back your old appliance for disposal at least for free of charge.This user manual is subject to change and improvement witt
NOTE: User man
NOTE: User manual is valid for module with SW version S5 (SW version is part of P/N)! Example: P/N: ZMNHBD

Qubino


Qup
Ulica Klementa Juga 007
5250 Solkan
Slovenia
E-mail: info@qubino.con
Tel: +38653359500
Web: www.qubino.com
Date: 12.01.2017
Document: Qubino_Flush 2 Relay PLUS user manual_V1.5_eng

